发布时间:2018-10-15
报告人:Peter Kloeden (德国Tuebingen大学数学研究所(Mathematics Institute))
报告题目:Asymptotic behavior of a neural field lattice model with a Heaviside operator
报告摘要:A neural field lattice system motivated by the Amari neural field model is studied. It is formulated as an infinite-dimensional ordinary differential inclusion on a weighted space of infinite sequences. The existence of solutions is proved via a sequence finite-dimensional approximations and the solutions are shown to generate a nonautonomous set-valued dynamical system which possesses a nonautonomous pullback attractor. Forward omega limit sets for the set-valued dynamical system are also discussed.
报告人简介:Prof. Dr. P.E. Kloeden是随机微分方程数值解和随机动力系统等研究方向的国际知名专家,其与人合著的著作《Numerical solution of stochastic differential equations》在Google学术中的引用超过6000次。Kloeden教授先后在澳大利亚 Deakin大学、德国Frankfurt大学任教授,现为德国Tuebingen大学教授。曾担任SIAM J. Numerical Analysis、Foundation of Computational Mathematics、Nonlinear Analysis: Theory, Methods and Applications等国际著名期刊编委。现为杂志Discrete and Continuous Dynamical Systems-Series B的主编, 担任Journal of Difference Equations and Applications、Stochastics & Dynamics、Advanced Nonlinear Studies等十余种杂志的编委。
报告时间:2018年10月17日(星期三)下午16:30-15:30
报告地点:科技楼南楼602