发布时间:2019-03-13
报告人: 邓定文(南昌航空大学)
报告题目:A second-order box solver for nonlinear delayed convection- diffusion equations with Neumann boundary conditions
报告摘要:In this talk, by dealing with the problem of order reduction, a second-order accurate box scheme is established to solve a nonlinear delayed convection-diffusion pinequations with Neumann boundary conditions. By the discrete energy method, it is shown that the difference scheme is uniquely solvable, and has a convergence rate of with respect to -norm in constrained and non-constrained temporal grids. Besides, for constrained temporal step, a Richardson extrapolation method used along with the box scheme, which makes final solution third- order accurate in both time and space, is developed in detail. Finally, numerical results confirm the accuracy and efficiency of our solvers.
报告人简介: 邓定文,博士,南昌航空大学数学与信息学院副教授、硕士生导师,主要从事偏微分方程有限差分法研究, 特别在紧致差分法、分裂算法和保结构算法等方面做出过有一定特色的研究工作,主持过国家自然科学基金项目3项及省厅级科研项目8项,获国家留学基金委面上项目资助访问加拿大约克大学1年,在 《Numerical Functional Analysis and Optimization》、《Applied Numerical Mathematics》、《Applied Mathematical Modelling》等计算与应用数学刊物上发表科研论文20余篇.
报告时间: 2019年3月16日上午8:30-9:30
报告地点: 科技楼南楼702室