发布时间:2019-03-04
报告人:肖清华(中国科学院武汉物理与数学研究所)
报告题目:Asymptotic stability of the phase-homogeneous solution to the Kuramoto-Sakaguchi equation with inertia
报告摘要:In this talk, we study the global-in-time existence of strong solutions and its large time behavior for the Kuramoto-Sakaguchi equation with inertia. The equation describes the evolution of the probability density function for a large ensemble of Kuramoto oscillators under the effects of inertia and stochastic noises. We consider the perturbation framework around the equilibrium, which is a Maxwellian type, and use the classical energy method together with our careful analysis on the macro-micro decomposition. We establish the global-in-time existence and uniqueness of strong solutions when the initial data {\color{red}{are}} regular, not necessarily close to the equilibrium, and the noise strength is strong enough. For the large-time behavior, we show the exponential decay rate of solutions towards the equilibrium under same assumptions with that for the global regularity of solutions.
报告人简介:中国科学院武汉物理与数学研究所副研究员,在武汉大学获学士、硕士、博士学位,2012年博士毕业后在韩国首尔国立大学做博士后,2015年至今为武汉物理与数学研究所副研究员,主要从事Boltzmann方程、与Cucker-Smale模型、Kuramoto模型相关动理学方程、双曲守恒律等方面的研究,目前在 Journal of Functional Analysis,SIAM Journal on Mathematical Analysis 等国际期刊发表论文20余篇,主持国家自然科学基金青年基金项目和面上项目各一项。
报告时间:2019年3月7日下午16:00-17:00
报告地点:科技楼南702