发布时间:2019-06-10
报告人:王冀鲁 研究员(北京计算科学研究中心)
报告人简介:王冀鲁,北京计算科学研究中心研究员,于2011年获得山东大学学士学位, 2015年获得香港城市大学博士学位。她的主要研究方向为PDE的科学计算和数值分析,尤其是有限元方法的理论分析。她的学术工作发表在《SIAM J. Numer. Anal.》《Numer. Math.》《Math. Comput.》等著名计算数学SCI杂志上。
(一)报告题目:Convergence analysis of Crank-Nicolson Galerkin FEMs for a nonlinear Schr\"{o}dinger-Helmholtz system
报告摘要:In this work, we consider the unconditional stability and optimal $L^2$ error estimates of linearized Crank-Nicolson Galerkin FEMs for a nonlinear Schr\"{o}dinger-Helmholtz system in $\mathbb{R}^d$ ($d=2,3$). By introducing a corresponding time-discrete system, we separate the error into two parts, i.e., the temporal error and the spatial error. Since the latter is $\tau$-independent, the uniform boundedness of numerical solutions in $L^{\infty}$-norm follows an inverse inequality immediately without any restrictions on time stepsize. Then, optimal error estimates are obtained in a routine way. Numerical examples in both two and three dimensional spaces are given to illustrate our theoretical results.
报告时间:2019年6月12日(星期三)晚上19:20
报告地点:科技楼南楼702室
(二)报告题目:Unconditionally convergent $L1$-Galerkin FEMs for nonlinear time-fractional Schr\"{o}dinger equations
报告摘要:In this work, a linearized $L1$-Galerkin finite element method is proposed to solve the multi-dimensional nonlinear time-fractional Schr\"{o}dinger equation. In terms of a temporal-spatial error splitting argument,we prove that the finite element approximations in $L^2$-norm and $L^\infty$-norm are bounded without any time stepsize conditions. More importantly, by using a discrete fractional Gronwall type inequality, optimal error estimates of the numerical schemes are obtained unconditionally, while the classical analysis for multi-dimensional nonlinear fractional problems always required certain time-step restrictions dependent on the spatial mesh size. Numerical examples are given to illustrate our theoretical results.
报告时间:2019年6月13日(星期四)上午10:20
报告地点:科技楼南楼602室