报告人:于立(南京大学)
邀请人:曾昊智
报告时间:2022年7月28日(星期四)14:00-16:00
报告地点:数学-欣苑2栋216会议室
报告题目:On Riemannian polyhedra with non-obtuse dihedral angles in
3-manifolds with positive scalar curvature(第二讲)
报告摘要:A Riemannian polyhedron is a smooth n-manifold with corners embedded as a polyhedral domain in a Riemannian n-manifold with the induced Riemannian metric. In this talk, we will discuss all possible 3-dimensional simple convex polytopes that can be realized as mean curvature convex (or totally geodesic) Riemannian polyhedra with non-obtuse dihedral angles in 3-manifolds with positive scalar curvature. This result can be considered as an analogue of the famous Andreev's theorem on 3-dimensional hyperbolic polyhedra with non-obtuse dihedral angles.Besides, we will introduce the notion of real moment-angle mani-fold associated to a simple convex polytope in a Euclidean space and discuss the existence of various geometric structures on such manifolds.
报告人简介:于立,副教授,硕士生导师,现任职于南京大学数学系。他主要从事代数拓扑学与几何拓扑学的研究,三项国家自然科学基金项目的主持人。他的数学工作发表在Advances in Mathematics, International Mathematics Research Notices, Mathematical Research Letters, Algebraic and Geometric Topology等国际著名期刊上。他近几年的主要研究方向:带环面群作用的空间的拓扑与几何性质。