报告人:王六权(武汉大学)
邀请人:胡怡宁
报告题目:Parity of coefficients of mock theta functions
报告时间:2020年10月8日9:00-11:00
报告地点:腾讯会议ID:321 505 633
报告摘要:We study the parity of coefficients of classical mock theta functions. Let $c(g;n)$ be the coefficient of $q^n$ in the series expansion of $g(q)$. For a power series $g(q)$ with integer coefficients, we say that $g$ is of type $(a,1-a)$ modulo 2 if $c(g;n)$ takes even values with probability $a$. We show that among the 44 classical mock theta functions, 21 of them are of type $(1,0)$ modulo 2. We further conjecture that 19 mock theta functions are of type $(\frac{1}{2},\frac{1}{2})$ and 4 functions are of type $(\frac{3}{4},\frac{1}{4})$. We also give characterizations of $n$ such that $c(g;n)$ is odd for the mock theta functions of type $(1,0)$.
报告人简介:王六权,2017年博士毕业于新加坡国立大学数学系,现为武汉大学副教授。他主要从事数论、组合分析、q级数及特殊函数理论的研究,迄今在《Advances in Mathematics》、《Transactions of the American Mathematical Society》、《Advances in Applied Mathematics》、《Journal of Number Theory》、《Ramanujan Journal》等期刊上发表学术论文30多篇。