报告人:李用声(华南理工大学)
邀请人:段志文
报告题目:Pointwise convergence problem of the Korteweg-de Vries-Benjamin-Ono equation。
报告时间:2020年11月27日(星期五),9:30-11:30
报告地点:腾讯会议ID:632 497 686
报告摘要:In this talk we discuss the pointwise convergence problem for the KdV-BO equation. First we prove that the solution u(x,t) converges pointwisely to the initial data f(x) for a.e. $x\in R$ when $f\in H^s(R)$ with $s\geq\frac{1}{4}$. Then we demonstrate that the Hausdorff dimension of the divergence set of points of the solution is $1-2s$ when $\frac{1}{4}\leq s\leq\frac{1}{2}$.Finally we obtain the stochastic continuity for the initial data with much less regularity, i.e. for a large class of the initial data in $L^2(\R)$, via the randomization technique.
报告人简介:李用声,教授,博士生导师,主要从事非线性发展程与无穷维动力系统的研究工作。在国内外重要学术刊物上发表论文80 余篇,其中SCI收录60余篇。先后主持5项国家自然科学基金项目。