报告人:王仁海(北京应用物理与计算数学研究所)
邀请人:崔洪勇
报告题目:Well-posedness, Weak Pullback Attractors and Invariant Measures for Lattice p-Laplacian Equation Driven by Nonlinear Noise
报告时间:2020年12月4日(星期五)上午10:00-12:00
报告地点:腾讯会议ID:124 998 075 密码:54321
报告摘要: This talk is concerned with the well-posedness, weak pullback mean random attractors and invariant measures for the p-Laplacian lattice system with nonlinear noise defined on the entire integer set. The existence and uniqueness of mean square solutions to the equations are proved when the nonlinear drift and diffusion terms are locally Lipschitz continuous. It is shown that the mean random dynamical system generated by the solution operators has a unique tempered weak pullback random attractor in a Bochner space. The existence of invariant measures for the stochastic equations in the square summable spaces is also established. The idea of uniform tail-estimates of solutions is employed to show the tightness of a family of distribution laws of the solutions.
报告人简介:王仁海于西南大学sunbet中国官网获博士学位(导师:李扬荣教授);曾获国家留学基金委资助,赴美国新墨西哥理工大学博士联合培养(导师:Bixiang Wang教授)。目前于北京应用物理与计算数学研究所从事博士后研究工作(合作导师:郭柏灵院士)。 他的主要研究方向为无穷维随机动力系统与随机偏微分方程。 目前,他已在 Stoch. Proc. Appl., JDE, JDDE, Nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, DCDS-A, 中国科学数学(英文版)等期刊发表多篇学术论文。