报告人:吴兴龙(中科院武汉物理数学研究所)
报告题目:Global existence and blow-up for the Zakharov equations with magnetic field in $\mathbb{R}^d$
报告摘要:This report is devoted to the study of the well-posedness,the lower bound of blow-up rate and the large time behavior of global solution to the Cauchy problem of the generalized Zakharov(GZ) equations with magnetic field in $\mathbb{R}^d$,$d\geq1$. At first, the work of well-posedness of the GZ system bases on the theory of Bourgain space on KdV and Schrödinger equation. Next, we establish the lower bound of blowup rateof blowup solution in sobolev spaces to the GZ system, which is almost a critical index. Finally, we obtain the long time behavior of global solution, whose $H^k$ norm grows at $k$-exponentially in time.
报告人简介:吴兴龙于2012年博士毕业于中山大学,后于北京九所随郭柏灵院士做博士后两年,于2014年入职中科院武汉物理数学研究所,现任副研究员。吴博士的研究兴趣在流体力学方程、浅水波方程的的定性分析上。他已在JFA与Nonlinearity等刊物上发表论文近20篇。
报告时间:2017年9月12日(星期二)上午9:30---10:30
报告地点:科技楼南楼702