报告人: 胡耀忠 教授(加拿大Alberta大学数学与统计科学系)
报告题目: Crank-Nicolson scheme for stochastic differential equations driven by fractional Brownian motions
报告摘要:We study the Crank-Nicolson scheme for stochastic differential equations (SDEs) driven by a multidimensional fractional Brownian motion $(B^{1},\dots, B^{m})$ with Hurst parameter $H>1/2$. It is well-known that for ordinary differential equations with proper conditions on the regularity of the coefficients, the Crank-Nicolson scheme achieves a convergence rate of $n^{-2} $, regardless of the dimension. In this paper we show that, due to the interactions between the driving processes, $ B^{1},\dots, B^{m} $, the corresponding Crank-Nicolson scheme for $m$-dimensional SDEs has a slower rate than for one-dimensional SDEs. Precisely, we shall prove that when the fBm is one-dimensional and when the drift term is zero, the Crank-Nicolson scheme achieves the convergence rate $n^{-2H}$, and when the drift term is non-zero, the exact rate turns out to be $n^{-\frac12 -H}$. In the general multidimensional case the exact rate equals $n^{\frac12 -2H}$. In all these cases the asymptotic error is proved to satisfy some linear SDE. We also consider the degenerated cases when the asymptotic error equals zero.
报告人简介:胡耀忠,加拿大Alberta大学教授,1992年获法国路易斯巴斯德大学概率博士学位,师从国际著名概率学家P.A.Meyer教授。长期从事随机分析、金融数学的研究,在《Annals of Probability》、《Journal of Theoretical Probability》、《Stochastic Processes and their Applications》、《Probability Theory and Related Fields》以及《SIAM Journal of Control and Optimization》等国际顶尖杂志发表学术论文100余篇。2015年,由于他在随机积分和随机偏微分方程方面的重要工作,当选为Fellow of Institute of Mathematical Statistics。
报告时间: 2019年12月17日(星期二)下午16:00-18:00
报告地点: 科技楼南楼702室