为加强国内外同行间的学术交流,展现数学物理方程与可积系统方向的研究成果,并促进sunbet中国官网和国内外相关领域数学学者的密切交流,sunbet中国官网将于2019年1月9日至11日举办“常微分方程定性理论研讨会”。
会议日程表
1月9日
注册报到(地点:申博sunbet官网国际学术交流中心八号楼大厅).
1月10日上午
8:45-9:00:开幕式(地点:科技楼702)
主持人:李骥 |
报告人 |
时 间 |
报告题目 |
张祥 |
9:00-9:45 |
动力系统可积及相关理论基础(一) |
9:45-10:15:会间休息 |
张祥 |
10:15-11:00 |
动力系统可积及相关理论基础(二) |
11:00-11:30 交流讨论 |
1月10日下午
主持人:李骥 |
报告人 |
时 间 |
报告题目 |
陈兴武 |
14:30-15:15 |
Limit cycles and monodromic normal forms of planar switching systems |
15:15-15:45 会间休息 |
王小虎 |
15:45-16:30 |
Convergence and pathwise dynamics of random differential equations driven by a stationary process |
1月11日上午
主持人:李骥 |
报告人 |
时 间 |
报告题目 |
李雪梅 |
8:30-9:15 |
时滞微分方程拟周期解的存在性 |
任景莉 |
9:15-10:00 |
On a reaction–advection–diffusion equation with double free boundaries and mth-order Fisher non-linearity |
10:00-10:30 会间休息 |
10:30-11:00交流讨论 |
1月11日下午
主持人:李骥 |
报告人 |
时 间 |
报告题目 |
成飞飞 |
14:30-15:15 |
随机共振与快慢系统 |
15:15-15:45 会间休息 |
于晴 |
15:45-16:30 |
一般不变流形在扰动下的保持理论 |
会议结束,离会
动力系统可积及相关理论基础
张祥
摘要:介绍动力系统可积理论的基础只是,包括微分系统的正规性,系统等价和其流共轭的关系,等价微分系统的首次积分的关系,以及Jaboci乘子与流的保体积。还会介绍一些动力系统可积的判定等等。
Limit cycles and monodromic normal forms of planar switching systems
陈兴武
摘要:We give some results about limit cycles bifurcating from some switching polynomial differential systems and the second order monodromic normal form of planar differential systems with a non-degenerate equilibrium on a single switching line. By this normal form, we find a condition under which exactly one limit cycle arises from a Hopf bifurcation.
Convergence and pathwise dynamics of random differential equations driven by a stationary process
王小虎
摘要:In this talk, we will focus on the convergence and pathwise dynamics of random differential equations driven by a stationary process such as Euler approximation of Brownian motion or called Wong-Zakai approximation. The considered equations include lattice system, reaction diffusion equation as well as wave equation.
时滞微分方程拟周期解的存在性
李雪梅
摘要:本报告主要介绍当线性化方程具有纯虚特征根和零特征根这种退化性时,关于时滞微分方程拟周期解(或拟周期不变环面)的存在性问题的研究结果。
On a reaction–advection–diffusion equation with double free boundaries and mth-order Fisher non-linearity
任景莉
摘要:A reaction–advection–diffusion equation is investigated with double free boundaries and mth-order Fisher non-linearity. The main purpose is to study the influence of the advection term on the dynamics of this problem. We obtain a rather complete description, i.e. a spreading–transition–vanishing trichotomy with small advection, a virtual spreading–transition–vanishing trichotomy with medium-sized advection, and vanishing with large advection. Moreover, when spreading happens, we prove that the leftward and rightward asymptotic spreading speeds are strictly decreasing with respect to m and the spreading solution converges to a semi-wave as t → ∞. Numerical simulation is also given to illustrate the impacts of the advection and the initial value on the free boundaries.
随机共振与快慢系统
成飞飞
一般不变流形在扰动下的保持理论
于晴