报告人:黄建华 (国防科技大学)
报告题目:Well-posedness of Stochastic Fractional Benjiamin-Ono Equation
报告摘要:In this talk, the well-posedness of the Cauchy problem for the stochastic generalized Benjamin-Ono equations are presented. The Cauchy problem for the stochastic generalized Benjamin-Ono equations is locally well-posedness for the initial data $u_0(x,\omega)\in L^2(\Omega, H^s(R))$ with $s\geq \frac{1}{2}-\frac{\alpha}{4}$, where $0<\alpha\leq 1$. In particular, when $u_0\in L^2(\Omega,H^{\frac{\alpha+1}{2})\subset L^{\frac{2(2+3\alpha)}{\alpha}}(\Omega,L^2(R))$. The global well-posedenss of the solution is also established. Our main results indicates that the well-posedness depends on the order of fractional operator, the normal of Hilbert-Schmidt operator and the regularity of the initial value
报告人简介:黄建华,国防科技大学文理学院教授、博士生导师,主要从事随机偏微分方程和无穷维动力系统理论研究的研究。先后主持国家自然科学基金面上项目3项. 在SIAM, JDE,DCDS-A, Chaos等国际重要期刊发表数十篇论文。
报告时间:2018年10月18日(星期四)上午10:00-11:00
报告地点:科技楼南楼702