报告人: 张文 (厦门大学)
报告题目:Developments on Ball Covering Property of Banach Spaces
报告摘要:By a ball-covering B of a Banach space X, we mean that B is a collection of open (or closed) balls off the origin whose union contains the unit sphere of X; and X is said to have the ball-covering property provided it admits a ball-covering of countably many balls. In this talk, we will recall some of important results on ball covering property of Banach spaces and introduce recent developments on this topic and some related questions will be presented.
报告人简介:张文,教授,博士生导师,厦门大学泛函分析导师组成员,长期主持几何非线性泛函分析讨论班,参与指导泛函分析专业硕士、博士研究生学习。对Lipschitz嵌入问题进行了深入的研究并取得了理想的成果,证明对任何凸集,在像空间具有RNP的情况下,Lipschitz嵌入与线性嵌入等价。持续研究了Lipschitz嵌入和球覆盖的相关性质,深入研究了扰动保距映射的稳定性问题。
报告时间: 2018年6月14日(星期四)上午11:00-12:00
报告地点: 科技楼南602