学术活动
首页  -  科学研究  -  学术活动  -  正文
【学术报告】2021年5月21日尧小华教授举办学术讲座

时间:2021-05-19

报告人:尧小华(华中师范大学)

邀请人:郑权

报告时间:2021年5月21日(星期五)10:30-12:30

报告地点:科技楼南楼602室

报告题目:Kato smoothing and Strichartz estimates for fractional and higher order operators with Hardy potentials

报告摘要:Let $0<\sigma<n/2$ and $H=(-\Delta)^\sigma +a|x|^{-2\sigma}$ be Schrodinger type operators on $\R^n$ with a sharp coupling constant $a\le -C_{\sigma,n}$ ( $C_{\sigma,n}$ is the best constant of Hardy's inequality of order $\sigma$). In the present talk, we will address that sharp global estimates for the resolvent and the solution to the time-dependent Schrodinger equation associated with $H$. In the case of the subcritical coupling constant $a>-C_{\sigma,n}$, we first prove the uniform resolvent estimates of Kato--Yajima type for all $0<\sigma<n/2$, which turn out to be equivalent to Kato smoothing estimates for the Cauchy problem. We then establish Strichartz estimates for $\sigma>1/2$ and uniform Sobolev estimates of Kenig--Ruiz--Sogge type for $\sigma\ge n/(n+1)$. In the critical coupling constant case $a=-C_{\sigma,n}$ , we show that the same results as in the subcritical case still hold for functions orthogonal to radial functions. This is a joint-work with Haruya Mizutani.

报告人简介:尧小华,华中师范大学教授,博士生导师。研究方向为调和分析与偏微分算子,研究兴趣主要集中在调和分析与偏微分方程的交叉领域。并主持和承担过包括国家自然科学面上基金、新世纪优秀人才计划项目在内的多项科研项目。 自2001年以来,在Comm. Math. Phys.、J. Funct. Anal、J. Differential Equations、Comm. Partial Differential Equations等期刊发表一系列重要研究成果


地址:中国·湖北省·武汉市珞喻路1037号 sunbet中国官网(东三十一楼)
邮政编码:430074     办公电话 E-mail:mathhust@mail.hust.edu.cn
Copyright 2025 ◎ 申博·sunbet(中国区)官方网站-Officials Website