报告人:金龙(清华大学)
邀请人:黄山林
报告时间:2021年6月21日(星期一)15:00-16:30
报告地点:腾讯会议:101 384 706
报告题目:Control of eigenfunctions on surfaces of negative curvature
报告摘要:In this talk, we present a uniform lower bound for the mass in any fixed nonempty open set of normalized Laplacian eigenfunctions on negatively curved surfaces, independent of eigenvalues. The result extends previous joint work with Semyon Dyatlov on surfaces with constant negative curvature. The proof relies on microlocal analysis, chaotic behavior of the geodesic flow and a new ingredient from harmonic analysis called Fractal Uncertainty Principle by Jean Bourgain and Semyon Dyatlov. Further applications include control for Schr\"{o}dinger equation and exponential decay of energy for damped waves. This is based on joint work with Semyon Dyatlov and St\'{e}phane Nonnenmacher.
报告人简介:金龙,2006年参加IMO并获得金牌,2010年本科毕业于北京大学数学科学学院,2015年获得加州大学伯克利分校数学系博士学位。曾在哈佛大学和普渡大学任博士后、助理教授,现任清华大学丘成桐数学科学中心副教授。研究方向为microlocal and semiclassical analysis, spectral and scattering theory,近年来在量子混沌(Quantum chaos)领域取得重要突破,在Acta Math、 JAMS、 CMP等顶尖期刊发表多篇学术论文。