报告人:肖清华(中国科学院精密测量科学与技术创新研究院)
邀请人:雷远杰
报告时间:2021年11月5日(星期五)14:00-16:00
报告地点:科技楼(南楼)702室
报告题目:Asymptotic stability of the phase-homogeneous solution to the Kuramoto-Sakaguchi equation with inertia
报告摘要:We present the existence and large-time behavior of solutions to the Kuramoto-Sakaguchi equation with inertia, which describes the evolution of the probability density function for a large ensemble of Kuramoto oscillators under the effects of inertia and stochastic noises. Based on the classical energy method together with careful analysis, we establish the global-in-time existence and uniqueness of strong solutions with large initial data when the noise strength is large enough a perturbative framework around the Maxwellian type equilibrium. The exponential decay of solutions towards the equilibrium is also obtained as a byproduct.
报告人简介:肖清华,2012年博士毕业于武汉大学sunbet中国官网,2012年至2014年在韩国首尔国立大学做博士后研究,现为中国科学院精密测量科学与技术创新研究院副研究员,主要从事Boltzmann型方程、与Kuramoto 模型和Cucker-Smale模型相关动理学方程等方面的研究。目前在ARMA,CMP,JFA,SIAM.JMA, MMMAS,JDE等期刊发表论文20余篇。