报告人:Georgios Akrivis(约阿尼纳大学)
邀请人:李东方
报告时间:2021年12月13日(星期一)16:00-18:00
报告地点:Zoom ID: 976 8652 7522 Passcode: 422458
报告题目:Discontinuous Galerkin time-stepping methods: Maximal regularity and a posteriori error estimates
报告摘要:We consider the discretization of differential equations satisfying the maximal parabolic L p -regularity property in Banach spaces by discontinuous Galerkin (dG) methods. We use the maximal regularity framework to establish that the dG methods preserve the maximal L p -regularity and satisfy corresponding a posteriori error estimates. The a posteriori estimators are of optimal asymptotic order of convergence. A key point in our approach is a suitable interpretation of the dG methods as modified Radau IIA methods; this interpretation allows to transfer the known maximal regularity property of Radau IIA methods to dG methods.
报告人简介:Georgios Akrivis希腊约阿尼拉大学教授,SIAM J Num. Anal 编委。计算数学顶级专家,主要研究微分方程数值解。在Numer Math, Math Comput, SIAM. J. Numer. Anal等杂志发表SCI论文50余篇。