报告人:吴先超(武汉理工大学)
邀请人:黄山林
报告时间:2021年12月17日(星期五)10:00-11:30
报告地点:科技楼南楼702室
报告题目:Reverse Agmon Estimates
报告摘要:We consider L^2-normalized eigenfunctions of the semiclassical Schrodinger operator on a compact manifold. The well-known Agmon-Lithner estimates are exponential decay estimates (ie. upper bounds) for eigenfunctions in the forbidden region. The decay rate is given in terms of the Agmon distance function which is associated with the degenerate Agmon metric with support in the forbidden region.In this talk, first we will introduce a partial converse to the Agmon estimates (ie. exponential lower bounds for the eigenfunctions) in terms of Agmon distance in the forbidden region under a control assumption on eigenfunction mass in the allowable region arbitrarily close to its boundary. Then by considering a Neumann problem with applying Poisson representation and exterior mass estimates on hypersurfaces, we will prove an improved reverse Agmon estimate on a hypersurface in the analytic setting.
报告人简介:吴先超,武汉理工大学讲师。研究方向为半经典分析在偏微分方程中的应用,主要研究特征函数的渐近估计问题。