报告人:Dima Ryabogin(肯特州立大学)
邀请人:张宁
报告时间:2022年6月7日 (星期二)21: 00-23:00
报告地点:Zoom ID: 632 5110 1950(Passcode: 610092)
报告题目:Ulam's problem 19 from the Scottish Book and related problems.
报告摘要:Ulam's Problem 19 from the Scottish Book asks is a solid of uniform density which will float in water in every position a sphere?Assuming that the density of water is $1$, one can show that there exists a strictly convex body of revolution $K\subset {\mathbb R^3}$of uniform density $\frac{1}{2}$, which is not a Euclidean ball, yet floats in equilibrium in every orientation. We will discuss this and related problems suggested by Croft, Falconer and Guy.
报告人简介:Dima Ryabogin,肯特州立大学教授,凸几何分析,应用调和分析专家;其文章多发表于Ann. Math.、JAMS、Adv. Math.等优秀期刊上。