报告人:盛利 (四川大学)
邀请人:熊跃山
报告时间:2022年6月12日(星期日)19:00-21:30
报告地点:腾讯会议:418 291 4616 密码:869159
报告题目:An introduction to extremal Kähler metrics (I)
报告摘要:Constant scalar curvature Kähler (cscK) metrics are specific examples of canonical metric on Kähler manifolds and extremal Kähler metrics. An extremal Kähler metric is a critical point of the Calabi functional. A Kähler metric ω is extremal and a minimizer of the Calabi functional, if and only if the scalar curvature S is a holomorphy potential. The cscK metrics are the critical points of the Mabuchi functional, which relate to moment maps on the space of Kähler metrics. The existence of cscK metrics is linked to the Futaki invariant and K-stability. We give an introduction of this program.
报告人简介:盛利,四川大学数学学院教授,博士生导师,国家级青年人才入选者。从事微分几何的研究,特别是极值Kahler度量和Gromov-Witten不变量,在国际数学期刊发表论文20余篇,主持面上项目2项。