报告人:鲁建(华南师范大学)
邀请人:张宁
报告时间:2022年6月22日 (星期三)14: 00-16:00
报告地点:771 5980 3545
报告题目:Some recent results on the dual Orlicz-Minkowski problem
报告摘要:The dual Orlicz-Minkowski problem arises from modern convex geometry. In the smooth case, it is equivalent to solving a class of Monge-Ampere type equations defined on the unit hypersphere. These equations could be degenerate or singular in different conditions. We will talk about some recent results on the existence and uniqueness of solutions to the dual Orlicz-Minkowski problem.
报告人简介:鲁建,华南师范大学教授。研究方向主要为偏微分方程,特别是Monge-Ampere 型方程及其在几何中的应用。在 Adv. Math.、J. Funct. Anal.、Trans. Amer. Math. Soc.、Calc. Var. Partial Differential Equations、J. Differential Equations 等数学期刊上发表 SC收录论文10余篇。