报告人:谢春景(上海交通大学)
邀请人:雷远杰
报告时间:2022年6月29日 (星期三)14: 30-16:00
报告地点:腾讯会议:467 515 091
报告题目:Analysis of steady solutions for the incompressible Euler system in an infinitely long nozzle
报告摘要:Stagnation point in flows is an interesting phenomenon in fluid mechanics. It induces many challenging problems in analysis. We first derive a Liouville type theorem for Poiseuille flows in the class of incompressible steady inviscid flows in an infinitely long strip, where the flows can have stagnation points. With the aid of this Liouville type theorem, we show the uniqueness of solutions with positive horizontal velocity for steady Euler system in a general nozzle when the flows tend to the horizontal velocity of Poiseuille flows at the upstream. Finally, this kind of flows are proved to exist in a large class of nozzles. This is a joint work with Congming Li and Yingshu Lv.
报告人简介:谢春景,上海交通大学教授,研究方向为流体力学中的偏微分方程,主要研究成果是证明了管道中和固定壁外亚音速流的适定性,已在Adv. Math., AMRA, CMP, J. Math. Pures Appl., SIAM J. Math. Anal., Indiana Univ. Math. J. JDE等国际期刊发表学术论文20余篇。