学术活动
首页  -  科学研究  -  学术活动  -  正文
【学术论坛】2020年12月27-28日第九届国际青年学者东湖论坛-sunbet中国官网分论坛

时间:2020-12-25

第九届国际青年学者东湖论坛-sunbet中国官网分论坛



第一场

主持人:王湘君

时间:2020年12月27日上午8:30-12:30

地点:腾讯会议ID:400 899 973,会议密码:3231;科技楼南楼706室


议程:

(一)

报告人:张道平

报告人简介:张道平,利物浦大学应用数学专业博士,目前香港中文大学博士后工作。从事利用变分法处理图像问题的研究,包括图像配准与图像分割。至今发表4篇论文,3篇SCI收录,3篇第一作者,其中2篇JCR应用数学Q1分区,1篇 JCR应用数学Q2分区。累计web of science核心收录他引2次。Google Scholar引用15次,单篇引用最高10次。参与了三项国家自然科学基金,其中面上项目一项,青年项目两项。受邀参加2016年和2018年的Siam Conference on Imaging Sciences并做学术报告。此外,也在剑桥,格拉斯哥,巴斯,利物浦等地举办的研讨会上多次做学术报告。

报告题目:Topology-Preserving 3D Image Segmentation Based On Hyperelastic Regularization


(二)

报告人:张庆

报告人简介:张庆,俄亥俄州立大学数学专业博士,目前韩国科学技术院访问教授。主要从事数论,特别是p-adic 域上代数群的表示论研究。共发表文章10篇,其中九篇是通讯作者。累计引用48次,单篇最高引用13次。主持一项项目。

报告题目:On local converse theorems for p-adic groups

报告摘要:Local converse theorems are a type of theorems to characterize representations of p-adic groups using twisted local gamma factors. In this talk, I will briefly introduce the local converse problem and report some recent progress on local converse theorems for certail p-adic classical groups and finite exceptional group G2.


(三)

报告人:段智鹏

报告人简介:段智鹏,哥本哈根大学基础数学专业博士,从事代数拓扑,组合拓扑,动力系统相关研究。

报告题目:Spaces of trees and complexes of not 2 connected graphs

报告摘要:In this talk we will show an equivariant homotopy equivalence between a kind of space of trees and complex of not 2 connected graphs up to suspensions. This project is a joint work with Greg Arone at Stockholm University. The main motivation for this project is based on the coincidence of the characters of homology of two spaces as $\Sigma_n$-modules.


(四)

报告人:吴冲

报告人简介:吴冲,明尼苏达大学双城分校生物统计专业博士,主要从事遗传统计(statistical genetics)和机器学习相关研究,以一作或通讯作者发表在Genome Medicine, Journal of Machine Learning Research, Bioinformatics 等期刊上发表SCI 论文十余篇,累计引用252次(Google Scholar 引用,含自我引用),单篇引用最高44次。主持两项校内项目,研究经费3万4千元。受邀参加JSM等学术会议,在ASHG上作口头报告一次。

报告题目:A regularization-based adaptive test for high-dimensional generalized linear models




第二场

主持人:王保伟

时间:2020年12月28日上午8:30-12:30

地点:腾讯会议ID:500 912 014,会议密码:3231;科技楼南楼706室


(一)

报告人:万鹏

报告人简介:万鹏,马里兰大学数学与计算科学博士,主要从事随机优化以及应用概率的研究,理论研究课题包括随机梯度的估算,蒙特卡罗统计模拟,连续型马尔科夫链以及强化学习。应用研究课题包括随机优化和统计筛选在纳米太阳能板设计中的应用。目前已发表一篇关于项目管理中的随机梯度估算的文章在Winter Simulation Conference 2020,并且会在该会议上做出学术报告。

报告题目:SENSITIVITY ANALYSIS OF ARC CRITICALITIES IN STOCHASTIC ACTIVITY NETWORKS

报告摘要:Using Monte Carlo simulation, this paper proposes a new algorithm for estimating the arc criticalities of stochastic activity networks. The algorithm is based on the following result: given the length of all arcs in a network except for the one arc of interest, which is on the critical path (longest path) if and only if its length is greater than a threshold. Therefore, the new algorithm is named Threshold Arc Criticality (TAC). By applying Infinitesimal Perturbation Analysis (IPA) to TAC, an unbiased estimator of the stochastic derivative of the arc criticalities with respect to parameters of arc length distributions can be derived. With a valid estimator of stochastic derivative of arc criticalities, sensitivity analysis of arc criticalities is carried out via simulation of a small test network.


(二)

报告人:张俊

报告人简介:张俊,佐治亚大学数学专业博士,主要从事几何和拓扑,尤其是辛几何(symplectic geometry)的研究。在Geometry&Topology, Journal of Symplectic Geometry 等期刊上发表SCI论文6篇,累计Google Scholar引用107次,单篇引用最高54次;出版专著2部。受邀参加RIMS & IBS-CGP Joint Workshop (Japan),AMS Sectional Meeting (USA),C^0 aspects of symplectic geometry and Hamiltonian dynamics (Israel) 等学术会议多次,作报告十余次。

报告题目:Quantitative studies in symplectic geometry

报告摘要:Symplectic and contact geometry are active research branches in geometry and topology. In this talk, I will demonstrate how quantitative studies are conducted in symplectic and contact geometry. Here, quantitative studies mean constructing various numerical (and computational) invariants that can distinguish central objects in symplectic and contact geometry. Related questions arise from well-known research subjects, such as Hofer’s geometry, symplectic embedding, and Legendrian characterization. Along with this demonstration, some of my work and results will be elaborated, and future research plans will be outlined.


(三)

报告人:任金波

报告人简介:任金波,法国巴黎十一大学数学专业博士,目前弗吉尼亚大学博士后。主要从事数论及代数几何方向的研究。

报告题目: Around the unlikely intersections of algebraic varieties

报告摘要: A large family of classical problems in number theory such as:

a) Finding rational solutions of the so-called trigonometric Diophantine equation where is an irreducible multivariate polynomial with rational coefficients;

b) Determining all such that and are both torsion points of the elliptic curve ;can be regarded as special cases of unlikely intersections of algebraic varieties, which belong to the subject of Diophantine geometry. In this talk, I will present a series of results concerning the unlikely intersections of which the ambient algebraic variety is a Shimura variety, including those theorems proved by Christopher Daw and myself.


















地址:中国·湖北省·武汉市珞喻路1037号 sunbet中国官网(东三十一楼)
邮政编码:430074     办公电话 E-mail:mathhust@mail.hust.edu.cn
Copyright 2025 ◎ 申博·sunbet(中国区)官方网站-Officials Website