报告人:宋心远(香港中文大学)
邀请人:潘灯
报告主题:Bayesian Models for Complex Data Analysis
报告摘要:This series of talks covers recent developments in Bayesian modeling and data analysis. It includes four talks. Talk 1 introduces principles of Bayesian inference, including Bayesian updating, prior specification, posterior derivation, data augmentation, MCMC algorithm, and sensitivity analysis. Apart from estimation, Bayesian model/variable selection methods, such as Bayes factor, deviance information criterion, and Bayesian Lasso, are described. Talk 2 introduces extended Generalized Linear Models for ordinal and nominal data. Talk 3 introduces extended Generalized Linear Mixed Effect Models for discrete data. Talk 4 introduces Bayesian models for heterogenous, hierarchical and missing data. Real applications are used to illustrate the methodologies.
报告人简介:宋心远,香港中文大学统计系主任,教授。研究领域是潜变量模型,非参数和半参数模型,贝叶斯方法,统计计算和生存分析。宋心远教授是统计学和心理学多个国际期刊的副主编,包括Psychometrika, Structural Equation Modeling, Biometrics, Canadian Journal of Statistics, Computational Statistics and Data Analysis等。宋心远教授已在统计学,生物统计学,心理学和其他交叉学科领域的国际期刊上发表超过140篇论文。
报告题目(一):Principle of Bayesian Inference
报告时间:2021年1月27日(星期三)14:00-16:00
报告地点:腾讯会议 987 2161 0473
报告题目(二):Extended Generalized Linear Models for Ordinal and Nominal Data
报告时间:2021年1月28日(星期四)14:00-16:00
报告地点:腾讯会议 987 2161 0473
报告题目(三):Extended Generalized Linear Mixed Effect Models for Discrete Data
报告时间:2021年1月29日(星期五)14:00-16:00
报告地点:腾讯会议 987 2161 0473
报告题目(四):Bayesian Models for Heterogenous, Hierarchical and Missing data
报告时间:2021年1月30日(星期六)14:00-16:00
报告地点:腾讯会议 987 2161 0473