报告人:张然 (吉林大学)
报告人简介: 张然,吉林大学数学学院教授、博士生导师,中国仿真算法专业委员会委员,吉林省计算数学委员会副主任。主要从事随机微分方程数值解、积分方程数值解、多尺度分析等研究,主持有国家自然科学基金重大研究计划重点项目及自然科学基金面上项目等. 在《 SIAM J. Numer. Anal.》、《 SIAM J. Sci.Comput. 》、《IMA J. Numer. Anal. 》等国际重要刊物发表论文50余篇.
报告题目: The weak Galerkin finite element method for eigenvalue problems
报告摘要: This talk is devoted to studying eigenvalue problem by the weak Galerkin (WG) finite element method with an emphasis on obtaining lower bounds. The WG method uses discontinuous polynomials on polygonal or polyhedral finite element partitions. As such it is more robust and flexible in solving eigenvalue problems since it finds eigenvalue as a min-max of Rayleigh quotient in a larger finite element space. We demonstrate that the WG methods can achieve arbitrary high order convergence. This is in contrast with classical nonconforming finite element methods which can only provide the lower bound approximation by linear elements with only the second order convergence. Numerical results are presented to demonstrate the efficiency and accuracy of the WG method.
报告时间: 2017年5月12日星期五上午9:30-10:30
报告地点: 科技楼南楼702室