报告人:陈元红博士 中南财经政法大学
报告题目: Moving recurrent properties for the doubling map on the unit interval
报告摘要:Let $(X,T,\mathcal{B}, \mu)$ be a measure-theoretical dynamical system with a compatible metric $d.$ Following Boshernitzan, call a point $x\in X$ is $\{n_{k}\}$-moving recurrent if$$\inf_{k\geq1} d\big(T^{n_{k}}x, \ T^{n_k+{k}}x\big)=0,$$
where $\{n_{k}\}_{k\in\mathds{N}}$ is a given sequence of integers. It was asked whether the set of $\{n_{k}\}$-moving recurrent points is of full $\mu$-measure. In this talk, we restrict our attention to the doubling map and discuss the size of the set of $\{n_{k}\}$-moving recurrent points in the sense of measure (a class of $2$-fold mixing measures) and Hausdorff dimension.
报告时间:2017年7月10日(星期一)上午11:30-12:15
报告地点: 科技楼南楼602室