报告人:Mumtaz Hussain博士 La Trobe University
报告题目: Metrical results for the sets of Dirichlet non-improvable numbers
报告摘要: Let $\psi:\mathbb R_+\to\mathbb R_+$ be a non-increasing function. A real number $x$ is said to be $\psi$-Dirichlet improvable if it admits an improvement to Dirichlet's theorem in the sense that the system $$|qx-p|< \, \psi(t) \ \ {\text{and}} \ \ |q|<t$$ has a non-trivial integer solution for all large enough $t$. In this talk, I will explain that the Hausdorff measure of the set of $\psi$-Dirichlet non-improvable numbers obey a zero-infinity law for a large class of dimension functions.
报告时间:2017年7月10日(星期一)下午14:30-15:15
报告地点: 科技楼南楼602室