报告人:江宁(武汉大学)
邀请人:雷远杰
报告时间:2021年5月26日(星期三)9:30-11:30
报告地点:科技楼(南楼)702室
报告题目:Compressible Euler limit from Boltzmann equation with Maxwell reflection boundary condition in half-space
报告摘要:In this talk, we will introduce the compressible Euler limit from the scaled Boltzmann equation with Maxwell reflection boundary condition in half-space. Starting from the local-in-time classical solution to the compressible Euler system with impermeable boundary condition in half-space, employing the coupled weak viscous layers (governed by linearized compressible Prandtl equations with Robin boundary condition) and linear kinetic boundary layers, and the analytical tools in [Guo-Jang-Jiang-2010-CPAM] and some new boundary estimates both for Prandtl and Knudsen layers, we proved the local-in-time existence of Hilbert expansion type classical solutions to the scaled Boltzmann equation with Maxwell reflection boundary condition with accommodation coefficient as power of Knudsen number when the Knudsen number small enough. As a consequence, this justifies the corresponding case of formal analysis in Sone's books [Sone-2002-Book, Sone-2007-Book]. This work is joint with Prof. Yi-long Luo and Dr. Shaojun Tang.
报告人简介:江宁,武汉大学sunbet中国官网教授, 博士生导师。本科毕业于南京大学数学系,硕士毕业于中科院数学所,博士毕业于美国马里兰大学。2006-2010年在纽约大学Courant研究所任Courant讲师,2010-2015年在清华大学数学科学中心任教,2015年至今任武汉大学sunbet中国官网教授。江宁教授的研究方向为非线性偏微分方程和几何分析, 相关成果发表在CPAM, ARMA, JMPA, CPDE, SIAM-JMA等国际著名期刊杂志上。